Y. Bazaikin
B. Gurevich S. Iglauer T. Khachkova
D. Kolyukhin
M. Lebedev V. Lisitsa
G. Reshetova

: Journal of Geophysical Research: Solid Earth

In order to study the effect of the micro-CT scan resolution and size on the accuracy of upscaled digital rock property estimation of core samples Bentheimer sandstone images with the resolution varying from 0.9 μm to 24 μm are used. We statistically show that the correlation length of the pore-to-matrix distribution can be reliably determined for the images with the resolution finer than 9 voxels per correlation length and the representative volume for this property is about 153 correlation length. Similar resolution values for the statistically representative volume are also valid for the estimation of the total porosity, specific surface area, mean curvature, and topology of the pore space. Only the total porosity and the number of isolated pores are stably recovered, whereas geometry and the topological measures of the pore space are strongly affected by the resolution change. We also simulate fluid flow in the pore space and estimate permeability and tortuosity of the sample.